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1. Concept of Laplace Transform:

Laplace Transform is a mathematical tool, which is used to evaluate the frequency domain(s-domain)

representation of a given continuous time domain signal.

Laplace Transform of a continuous time signal x(t) is represented with X(s) and it can be obtained

from the formula

LT[ x(t)] = X(s) = f x(OeStdt — — — — — — )

Where, s is a complex variable, s = + jw
o = Re{s} = Real part of s
w = Im{s} = Imaginary part of s

If x(t) is right sided (causal), then its s-domain can be obtained from the formula

0

LT[ x(t) ] = X(s) =f x(t)e Stdt — — — — — (2)

0
If x(t) is left sided (anti-causal), then its s-domain can be obtained from the formula

0
LT[x(t) ] = X(s) = f_ x(t)e Stdt — — — — — 3

» Equation (1) is called bilateral Laplace Transform
» Equations (2) and (3) are called unilateral Laplace Transforms

S-Plane and Pole-Zero Plot:

A graph, which is drawn between Re{s} on x-axes and jim{s} on y-axes is called s-plane.

j Im{s}

A

> Re{s}

(s—2z1)(s—2y)(s — z3) .....
(s =p)(s —p2)(s —p3) ..

Let, X(s)=

» Roots of numerator polynomial are called zeros and which are represented with ‘o’.

> Roots of denominator polynomial are called poles and which are represented with x’.

» Indicate poles and zeros on s-plane to get pole-zero plot.
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2. Relation between Laplace and Fourier Transforms:

From the basic definition of Fourier Transform

FT[x(t)] = f x(t)e Vtdt
From the basic definition of Laplace Transform

LT[ x(t)] = f x(t)e Stdt;puts = o + jw
=.[ x(t)e~(@+Hiwitqgt
=.f x(t)e teIWtdt

= FT[x(t)e ]

Ifo=0=s=jw,then LT [x(t) ] =FT [ x(t) ].

On the imaginary axes of s-plane, both the Laplace and Fourier Transforms are same.

3. Existance of Laplace Transdorm:

The product of given signal x(t) and the exponential term et should be absolutely integrable is called

existence of Laplace Transform or convergence of Laplace Transform.

j_oo lx()e 5t|dt < o0;s = 0 + jw
= f_oo |x(t)e= M| dt < 0
= f_oolx(t)lle‘“t||e‘j""t|dt < o

=>f lx(t)|e~tdt < o0

Note: The range of values of ‘c’ or ‘Re{s}’ or ‘s’ for which the basic definition of Laplace

Transform will converges or produces a finite result is called Region of Convergence (ROC).
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4. |_aplace Transform of various classes of Signals:

4.1. Impulse Signal, x(t) = &(t):

Impulse signal, x(t) = §(¢t) = {og : tt:(())
)
Height (1/A)

<------>

\ 4
—

Width (A) - Negligible

From the definition of Laplace Transform
LT[x(t)] = j_wx(t)e‘“dt
= LT[6(t)] = j_wcs(t)e‘“dt;Property of impulse signal, 5(t)x(t) = §(t)x(0)
= j_ w5(t)e°dt
= j_ wcS(t)ldt

= j 6(t)dt; Area under impulse signal is "1’

=1

ROC
Entire s — plaane

LT[5(D)] = X(s) = 1

j Im{s}

7

> Re{s}

7
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4.2. Step Signal, x(t) = u(t):
From the definition of Laplace Transform

LT[x()] = .foox(t)e_“dt
= LT[u(t)] = foou(t)e_“dt,u(t) =1,t>0

0
= f e stdt
0

— (0¢]
eSt

ROC
s>0

LTu(®)] = X(s) =

Pole-Zero Plot with ROC:

j Im{s}

A

%k » Re{s}

7

Note: X(s) has one pole, which is located at s = 0.
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4.3. Decaying Exponential Signal, x(t) = e"*u(t),a > 0:
From the definition of Laplace Transform

LT[x()] = .foox(t)e_“dt
LT[e"*u(t)] = fooe_atu(t)e_“dt,u(t) =1,t>0

— fooe—(s+a)tdt
0

_ [e'e]
e (s+a)t

—(s+a) 0

e—(s+a)oo _ e(s+a)0

—(s+a)

e ra>0
=—— 5s+a
—(s+a)

0—-1
—(s+a)'s
1

= ,S > —a
s+a

> —a

ROC
LT[e %u(t)] = X(s) =
e u(®)] = X(s) = —— "
Pole-Zero Plot with ROC:
j Im{s}
;// A
'//
K » Re{s}

s=-a :r/ //

Note: X(s) has one pole, which is located at s = -a.
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4.4, Raising Exponential Signal, x(t) = e*u(—t),a > 0:
From the definition of Laplace Transform

LT[x()] = .foox(t)e_“dt
LT[e“u(-t)] = fooeatu(—t)e_“dt; u(-t)=1,t<0

0
— [ et

e (a-s)t| O

a—sSs
—00

(@=5)0 _ o(a=s)(~w)

a—s
ed —e ™
= ,a—s>0
a_
1-0
= ,a>S
a—s
-1
= ,s<a
S_
-1 ROC
LT[e®u(—-t)] =X =
[e“u(-1)] = X(s) = —— -
Pole-Zero Plot with ROC:
j Im{s}
A
7, |
/
/I
Re{s
%.S:a {s}

N

Note: X(s) has one pole, which is located at s = a.
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4.5. Signal, x(t) = —e"*u(—t),a > 0:
From the definition of Laplace Transform

LT[x()] = .foox(t)e_“dt
= LT[—e %u(-t)] = foo(—e_atu(—t))e_“dt; u(—t) =1,t<0

0
— _ f e—(s+a)tdt

0

e—(s+a)t

T —Gs+a)

—00

e~ (5+ta)0 _ ,—(s+a)(~)

s+a
el —e™®
=——,5+a<0
s+a
1-0
= ,s < —a
s+a
1
= ,s < —a
s+a
1 ROC
LT[—e~*u(—-t)] = X(s) =
[ (OI=X() = 7 s<-a

Pole-Zero Plot with ROC:

j Im{s}

// %///Qg__a > Re{s}
7

Note: X(s) has one pole, which is located at s = -a.
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4.6. Double Exponential Signal, x(t) = e~ a > 0:
From the definition of Laplace Transform

LT[x(t)] =.[ x(t)e Stdt
= LT[e~4t =f e~tlg=stt
0 0
=f e‘a(‘t)e‘“dt+f e~ ®e-stgt
—0 0
0 00
=.[ e“te_“dt+f e e Stdt
—0 0

0 ©
=j e(“‘s)tdt+j e-(@+)tgy
—0 0

0 e~ (a+s)t S
+ _—
e —lats)|,

e(a—s)o _ e(a—s)(—oo) e—(a+s)oo _ e—(a+s)0

e(a—s)t

a—s

+
a—s —(a+5s)
O—e™® e®—¢gf
;a
a—s —(a+s)
1-0 0—-1
= + ;a>s5,s<a&s>—a
a—s —(a+s)
1 1 2a
+ = ;
a—s a+s a*-—s?

e

—s>0&a+s>0

—a<s<a

] 2a ROC
LT{e aItI] =X(s) = a? —s?2 —a<s<a

Pole-Zero Plot with ROC:
i Im{s}
A

% .

s=-a ’:7

Note: X(s) has two pole, which are located ats =aand s = -a.
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5. Region of Convergence (ROC) in s-domain and Properties:

The range of values of s for which the basic definition of Laplace transform will converges or

produces a finite result is called Region of Convergence (ROC).

Property-1:
If x(t) is right-sided signal with infinite duration, then its ROC is right half of the right most pole.
Ex:

ROC

LT[e"%u(t)] = X(s) = Ta p—

Property-2:
If x(t) is left-sided signal with infinite duration, then its ROC is left half of the left most pole.
Ex:

-1 ROC
LT[e®u(—t)] = X(s) =
[e“u(=6)] = X(s) = —— —
Property-3:
If x(t) is both-sided signal with infinite duration, then its ROC is a strip, which lies between two
poles.
Ex:
LT[e=21t] = X(s) = koc
a? — s? —a<s<a
Property-4:

If x(t) is finite duration signal, then its ROC is entire s-plane except possibly s=+oo.
Ex:

ROC
Entire s — plaane

LT[5(D)] = X(s) = 1

Property-5:
Within the ROC, poles do not exist and ROC is independent of zero’s.
Ex: Above all Examples

Property-6:
ROC is a strip, which is parallel to the jw-axes in s-plane.

Ex: Above all Examples
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6. Properties of Laplace Transform:

6.1. Linear Property:

If X1(t), x2(t) are two continuous time signals and LT[ x1(t) ] = X1(s), LT[ x2(t) ] = X2(s),
then LT[ a xu(t) + b x2(t) ] = a Xu(s) + b X2(s) is called linear property of Laplace Transform.
Proof: From the definition of Laplace Transform

LT[x()] = foox(t)e‘“dt
Replace x(t) with a x1(t) + b x2(t)

LT[ax,(t) + bx,(t)] = foo(axl(t) + bx,(t))e~stdt

= .[-00 (ax;(t)e St + bx,(t)e )dt

f axl(t)e_Stdt+f bx,(t)e Stdt

af x,(t)e stdt + bf x,(t)e Stdt

= aLT[x;(t)] + bLT[x,(t)] = a X1(s) + b X,(s)

4.2. Time Shifting Property:

If x(t) is a continuous time signal and LT[ x(t) ] = X(s),

then LT[ X(t — to) ] = e ™ X(s) is called time shifting property of Laplace Transform.
Proof: From the definition of Laplace Transform

LT[x()] = foox(t)e‘“dt
Replace x(t) with x(t — to)

LT[x(t — ty)] = J x(t —ty)e Stdt, Let t — t, = 7,dt = dt
= J x(1t)e Sto* Dy
= j x(1)e WSe=Stdr

o0
= e‘“oj x(1)e Stdr
—0

= e St LT[x(t)]
= e St X(s)
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4.3. Time Reversal Property:
If x(t) is a continuous time signal and LT[ x(t) ] = X(s),
then LT[ x(-t) ] = X(-s) is called time reversal property of Laplace Transform.

Proof:

From the definition of Laplace Transform
LT[x(t)] =f x(t)e stdt
Replace x(t) with x(-t)

LT[x(—t)] = f x(—t)e Stdt,Let —t =1 = dt = —dt

= J x(1)e5CDdr

0

= foox(T)e_(_S)TdT;LT[x(t)] =X(s) = f x(t)e Stdt

—00

= X(=5)

4.4. Conjugate Property:

If x(t) is a continuous time signal and LT[ x(t) ] = X(s),

then LT[ x*(t) ] = X*(s*) is called conjugate property of Laplace Transform.
Proof:

From the definition of Laplace Transform
LT[x(t)] =.f x(t)e Stdt
Replace x(t) with x*(t)

LT[x*(t)] = foox*(t)e‘“dt

= (L(:x(t)e"s*tdt>

= (X(s)"
=X"(s")

*
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4.5. Time Scaling Property:
If x(t) is a continuous time signal and LT[ x(t) ] = X(s),

then LT[ x(at) | = ﬁX (i)is called time scaling property of Laplace Transform.

Proof:

From the definition of Laplace Transform

LT[x(t)] =f x(t)e stdt

Case-1 (a > 0) : Replace x(t) with x(at)

LT[x(at)] = f x(at)e Stdt,Let at = 7 = adt = dt
= f x(1)e~S"%(dt/a)

= %f_O:OX(T)e‘(%)TdT; LT[x(t)] = X(s) = f x(t)e stdt

(-~

Case-2 (a > 0): Replace x(t) with x(-at)

1
a

LT[x(—at)] = wa(—at)e‘“dt,Let —at =1 = adt = —drt
_ j " xme~ D e/
= %f:x(r)e_(—iaﬁdr

= lX (i) _____ (2)

a —a
Compare equations (1) and (2)

= LT[x(at)] = ﬁX (2)

Note: If the time domain signal x(t) is scaled with ‘a’ then the frequency domain / s-domain X(s) is

scaled with 1/a’.
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4.6. Shifting in s-domain Property:
If x(t) is a continuous time signal and LT[ x(t) ] = X(s),
then LT[e 5 x(t) ] = X(s-so) is called shifting in s-domain property of Laplace Transform.

Proof: From the definition of Laplace Transform

LT[x()] = foox(t)e_“dt
Replace x(t) with e %t x(t)

LT[e5'x(t)] =.f eSotx(t)e Stdt

= foox(t)e_j(s_s(’)tdt; LT[x()] = X(s) = f x(t)e Stdt

= X(s—Sp)
4.7. Time Differentiation Property:

If x(t) is a continuous time causal signal and LT[ x(t) ] = X(s),
then LT[ x(t) ] = sX(s) — x(0) is called time differentiation property of Laplace Transform.

Proof: From the definition of Laplace Transform

LT[x(t)] = wa(t)e‘“dt,given that x(t)is causal
= LT[x(t)] = wa(t)e‘“dt
0
Replace x(t) with ix(t)
LT [d x(t)] f x(t) e Stdt

=j0 e~ <%x(t)>dt

(0¢]

=eStx(t)| - Jwe‘“(—s)x(t)dt
o Jo

00

= e ®x(0) — e %%(0) + sf x(t)e Stdt
0

=0—x(0) + sX(s)
= sX(s) — x(0)

Note: LT [ x(t)l = s2X(s) — sx(0) — x'(0); x'(0) = ix(t) att=0
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4.8. Time Integration Property:
If x(t) is a continuous time signal and LT[ x(t) ] = X(s),

X(s)

then LT[ f_th(r)dr] == is called time integration property of Laplace Transform.

Proof:

From the definition of Laplace Transform
LT[x(t)] =f x(t)e Stdt

Replace x(t) with f_th(r)dr

LT l.f;x(r)drl = .[-_0; <f_;x(1)dt> e Stdt

oo foo e—St
— x(t) dt
—00 —0 -s

1 o0
=0—-0+ Ej x(t)e Stdt

—st

= .I-_t x(r)dte

3 X(s)

S

4.9. Differentiation in s-domain Property:

If x(t) is a continuous time signal and LT[ x(t) ] = X(s),
then LT[t x(t)] = - %X(s) is called differentiation in s-domain property of Laplace Transform.

Proof:

From the definition of Laplace Transform
LT[x(0)] = X(s) = f x(t)e Stdt
Differentiate X(s) w.r.t ‘s’

dX()—foo t d ~Stdt
ds 5= x()dse

—o0

= ij(t)e_“(—t)dt

= —jwtx(t)e_“dt
= —LT[tx(t)]

= LT[tx(t)] = —%X(s)
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4.10. Integration in s-domain Property:
If x(t) is a continuous time signal and LT[ x(t) ] = X(s),

then LT [@] = f:oX(S)ds is called integration in s-domain property of Laplace Transform.

Proof:

From the definition of Laplace Transform
LT[x(t)] = X(s) = f x(t)e Stdt

Integrate X(s) w.r.t ‘s’ over the range s to o

.fsz(s)ds = f:x(t) (j:oe_“ds> dt
_ f_ O:Ox(t) <e_—zt o:) dt

[e¢) —o00 -0

= f_wx(t)e_—_tdt

* 0—-1
:.f X(t)_—tdt

o LT [&tt)] _ j “X(s)ds

4.11. Initial Value Theorem:
If x(t) is a continuous time causal signal and LT[ x(t) ] = X(s), then the initial value of a causal signal

can be computed from x(t) as well as X(s) by using the formula

Lt Lt
x(0) =, & x@® =1

OOsX(s) is called initial value theorem.
Proof:

From differentiation property of Laplace Transform
d
LT [&x(t)] = sX(s) — x(0)

d
= sX(s) = x(0) + LT [ax(t)]

=x(0) + .[00 (%x(t)) e Stdt

0
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Apply as limit s — o

itoosx(s) — x(0) + fo . (%wg) e~dt
=x(0)+0

t

= x(0) =, H RIOES - _SX(s)

4.12. Final Value Theorem:

Laplace Transforms and Z-Transforms

If x(t) is a continuous time causal signal and LT[ x(t) ] = X(s), then the final value of a causal signal

can be computed from x(t) as well as X(s) by using the formula

_ Lt _ Lt : :
x(0) = o LX) = <0 OsX(s) is called final value theorem.

Proof:

From differentiation property of Laplace Transform
d
LT [ax(t)] = sX(s) —x(0)

= sX(s) = x(0) + LT [%x(t)]
=x(0) + .[; (ax(t))e tdt
Apply as limits - 0

Lt

S =

OsX(s) =x(0) + jow (%x(t)) e 0dt

*(d
=x(0) + f (ax(t)> dt
0

(0]

= x(0) + x(t)

0
= x(0) + x(0) — x(0)
= x()

Lt Lt
= x(®) = . Oox(t) =5 OSX(s)
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4.13. Time Convolution Theorem:
If x1(t), x2(t) are two continuous time signals and LT[ x1(t) ] = X1(s), LT[ X2(t) ] = X2(s),
then LT[ xa1(t) * x2(t) ] = Xa(s) X2(s) is called time convolution theorem.

Proof:

From the definition of Laplace Transform

LT[x(t)] = foox(t)e‘“dt

Replace x(t) with x1(t) * xo(t)

LT[0 @) = [ (a0 x(0)edt

= f_oo (LO:Oxl(T) x,(t — T)dT) e Stdt
= ./—_00 x1 (1) (f_o:o x,(t —1)e” st dt) dt

= fooxl(T)LT[xz (t—1)]dr
= fooxl(T)e_STXz(s)dT

= X,(s) ijl(r)e‘”dr
= X5(s)X1(s)

= X1(8)X>(s)

4.14. Frequency Convolution Theorem:
If X1(t), X2(t) are two continuous time signals and LT[ x1(t) ] = Xu(s), LT[ x2(t) ] = X2(s),

then LT[ xa1(t) x2(t) ] = Xa(s) * X2(s) is called frequency convolution theorem.
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7. Inverse Laplace Transform:

We know that the Laplace Transform is used to convert continuous time domain signal into
frequency domain or s-domain representation. Similarly, the frequency domain or s-domain
representation can be converted into continuous time domain signal by using inverse Laplace

Transform. Some of the formulas used in inverse Laplace Transform are

S.No. | Laplace Transform Inverse Laplace Transform

1. |rrs1=1 L71] = 8(¢)

1
2. | LTu@®)] = ;,Re{s} >0

-1 11 ( u(t),Re{s}>0
1 [E] - {—u(—t),Re{s} <0
3. LT[—u(-t)] = ;,Re{s} <0

1
4. LT[e *u(t)] = S_I_—a,Re{s} > —qa

-1 [ 1 ] _ { e~ u(t),Re{s} > —a
1 s+al l—e ®u(—t),Re{s} < —a
5. LT[—e %u(-t)] = S_I_—a,Re{s} < -a

m! I1 m-1
6. LT[tmu(t)] = W,Re{s} >0 L~ S_m] = mll(t), Re{s} >0
7 LT[te~% = R L1 ! =te™ R
. [te U(t)] = m, e{s} > —a m =te U(t), 8{5} > —a
8 —alt] Y L P
: LT[e ]=a2_52,—a<Re{s}<a L pramp] Il ,—a<Re{s}<a
- g -
-1 _
9. LT[Cos(at)u(t)] = az—-l-sz'Re{S} >0 |L (a2 + 52l ~ Cos(at)u(t),Re{s} >0
. a RE Y L
10. | LT[Sin(@n)u(t)] = ———— Re{s} >0 | L7 |gz7rgs| = Sin(atju(t), Re{ s} > 0

11. | LT[x(t — ty)] = e~ X(s) L7 e X (s)] = x(t — to)
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8. Introduction to Z-Transform (ZT):

Z-Transform is a mathematical tool, which is used to evaluate z-domain representation of a discrete

time domain sequence.
Z-Transform of a discrete time signal or sequence x(n) is represented with X(z) and it can be

evaluated by using the formula

o0

ZT[x(m)] =X(2) = ) x()z"——————- (1)

n=—wo
Above equation (1) is called bi-directional or both sided Z-Transform, because x(n) is both-sided.

If x(n) is causal or right sided, then its Z-Transform can be defined as

[ee]

ZT[x(m)] = X(2) = ) x(mz" === ————— )

n=0
If x(n) is anti-causal or left sided, then its Z-Transform can be defined as
-1

ZT[x()] =X@) = ) x(mz"———————- 3)

n=—ow
Above equations (2) and (3) are called uni-directional or one-sided Z-Transform.
Where, z is a complex variable, and it can be defined as
z=relo

=rcos(w) +j rsin(w)

=Re{z}+jIm{z}
Where, r is magnitude of z and w is phase of z or digital frequency, measured in rad/sample.
A graph, which is drawn between Re{ z } = r cos(w) on x-axis and jim{ z } = jr sin(®) on y-axis is

called z-plane.

j Im{z}

A.
Jr
/ \ 0 r o )
- :
_jr

o |Re{z}=rcos(o) | Im{z}=jrsin(o)| |z |

r
180° _r jo r
270° 0 —jr r

z-plane is a circle, centered about origin with a radius of |z |
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9. Z-Transform of various classes of Signals:

9.1. Right-sided Signal with Infinite Duration, x(n) =a " u(n)

From the basic definition of Z-Transform,

o]

ZT[x(n) | = Z x()z™"

Nn=-—oo

ZT[a"u(n)]= > a"u(n)z™

8

=L,If E<1
1-2 z
z
- lal<|z|
z-a '
z
z
X(2)=——, |z|>|a]|
z-a
ROC
ZT[a™u(n)] = X(z) =
[a™u(n)] (2) ~—a PIEIrT

Pole-Zero Plot with ROC:

Note: X(z) has one zero, which is located at z=0 and one pole, which is located at z=a.
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9.2. Left-sided Signal with Infinite Duration, x(n) =-a " u(-n - 1):

From the basic definition of z transform

o]

ZT[x(n) | = Z x(n)z™"

ZT[-a"u(-n-1)]= S[-a" u(n-1)]z"

-1

:_zanz—n

a l—E a
a
:_(5 [L),,f I2]<|a|
a a-Zz
z
= lzl<|a]
ZT[—anu(—n—l)]=X(z)=Z_a IZF|2C<>C|aI

Pole-Zero Plot with ROC:

Note: X(z) has one zero, which is located at z=0 and one pole, which is located at z=a.
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9.3. Both-sided Signal with Infinite Duration, x(n) = a Inl:

From the basic definition of z transform

0

ZT[x(n)] = Z x(n)z™

n=—ow
ZT[a" = iaI"I z™

n=-o

= iaI“I z’”+iaI”I z"
n=—o0 n=0

= ia‘” z‘”+ian z"
N=—o0 n=0
= o a n

= Y (az)" +Z(—j
n=—o0 n=0 VA
© © n

=> (az)" +Z(§j
n-1 no\ Z

Il
Q
N
=
+
Q
N
+
~
Q
N
N—r
N
+
—~~
Q
N
N—r
w
+
T
—~
QD
N
N—r
3
+
—
[N
+
I
N
+
I
N
+
+
I

{ 1

=aZ +

1-az |

_|_&Z }r z I if |z|<1/a] & |a/<]z|
|1-az| |[z-a

- aZ(Z-a)+Z(1'aZ)I, if |z <1/ja] & |z|>|a|
(1-az)(z-a)

<1

L it faz<1 &IE
a z

1-2
z

B 2
_ z(az-a +1-az)} |a|<|z| <1/|a|
| (1-az)(z-a)

e
_ %I al <[] <1/d

- 2(1-a%) } la <[z <1/fa]
| -a(z-1/a)(z-a)

i -1/
| Hata a)} <[z <1/

Laplace Transforms and Z-Transforms
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1 ROC
z(a—3)
ZT[a™] = X(2) = T
(Z—a)(z——) lal < |z| <m
Pole-Zero Plot with ROC:
j Im{z}

A

r’7—//

,ROC -1

7 -

Note: X(z) has one zero, which is located at z=0 and two poles, which is located at z=a and z=1/a.

9.4. Finite duration Signal:

Example-1: x(n) = {1}
From the definition of

z-transform

o0

ZT[x(n)]= > x(n)z™"

N=—o0

Example-2: x(n) = {1,-1}
From the basic definition of

z-transform

0

ZT[x(n)1= > x(n)z™"

N=—0o0

Example-3: x(n) = {1, —%}

From the basic definition of

z-transform

00

ZTx(n) ] = D _x(n)z™"

N=—o0

= x(0)z™° =x(0)z" +x(1)z™ =x(1)z ™ +x(0)z°
:le :1X1—1X271 :1XZ_1X ZO
= l = 1_ Zil =7 —1
_z-1
z
ROC
ZT[x(m)] = X(2) =1 Entire z-plane
z—1 ROC
ZT[x(m)] = X(2) = — Entire z-plane except z=0
ROC
ZTx(] =X(2) =z -1 Entire z-plane except z=Fo
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10. Region of Convergence (ROC) in z-domain and Properties:
The range of values of z for which the basic definition of z transform will converges or produces a

finite result is called Region of Convergence (ROC).

Property-1:
If x(n) is right-sided sequence with infinite duration, then its ROC is outside the circle of outermost
pole.
EXx:
Property-2:
If x(n) is left-sided sequence with infinite duration, then its ROC is inside the circle of innermost
pole.
Ex:
ROC
ZT[—a"u(-n—-1)] =X(2) =
z—a lz| <l|al
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Property-3:
If x(n) is both-sided sequence with infinite duration, then its ROC is a finite duration ring, which lies
between two poles.
Ex:

2 (a _ 1) ROC

1
z-a)(z-3) lal <zl <7

» Re{z}

Property-4:
If x(n) is finite duration sequence, then its ROC is entire z-plane except possibly z=0 and/or z=zoo.
Ex:

ROC
ZTx(m)] = X(2) =1 Entire z-plane
z—1 ROC
ZT[x(m)] = X(2) = Entire z-plane except z=0
ROC
ITx(m] =X(z) =z -1 Entire z-plane except z=+o

Property-5:
Within the ROC, poles do not exist.

Ex: Above all examples.

Property-6:
ROC is independent of zero’s.

Ex: Above all examples.
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11. Properties of Z Transform:

11.1. Linear Property:
If x1(n), x2(n) are two discrete time sequences and ZT[ x1(n) ] = X1(2), ZT[ x2(n) ] = X2(2),
then ZT[ a x1(n) + b x2(n) ] = a X1(z) + b X2(z) is called linear property of z transform

Proof: From the basic definition of z transform of a sequence x(n)

o]

IT[x(n) ] = Z x(n)z™"

Nn=-—oo

replace x(n) with a x¢(n) + b x2(n)

ZT[ax,(n)+bx,(n)]= i[ ax,(n)+bx,(n)]z™"

n=—oo

= i[axl(n)+ bx,(n)]z™

= f:[axl(n)z’n +bx,(n) z™"]

o0

- z [ax,(n)z "]+ S [bx,(n) 2]

n=—oo

=ay x,(Nz"+b > [x,(n) 2]
=aZT[ x,(n)]+bZT[ x,(n)]
=a X,(z) +b X,(2)

11.2. Time Shifting Property:

If x(n) is a discrete time sequence and ZT[ x(n) ] = X(2),

then ZT[ x(n —ng) ] =z ™ X(z) is called time shifting property of z transform.

Proof: From the basic definition of z transform of a sequence x(n)
ZT[x(n)]1= D _x(n)z™"

ZT[x(n-n,)]= Z:x(n-no)z’”,Letn—n0 =m=n=ny,+M

o0

= > x(m)z "™
m=—o0

o0

= > x(m)z™z™

m=—cw

=z > x(m)z™
Mm=—o0

=z"ZT[x(n)]
=z"X(2)
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11.3. Time Reversal Property:
If x(n) is a discrete time sequence and ZT[ x(n) ] = X(2),
then ZT[ x(— n) ] = X(1/z) is called time reversal property of z transform.

Proof: From the basic definition of z transform of a sequence x(n)

0

IT[x(n) ] = Z x(n)z™"

Nn=-—owo

NgE

ZT[x(-n)]= > x(-n)z",Letn=-m,n=-m,

nN=-o0

x(m)z ™

Il
M\

00

= ZX(m) @)™

—» 1 -m
- S ]

=ZT[ x(n)] withreplacementof z=1/z
_ x(})
z

If x(n) is discrete time sequence and ZT[ x(n) ] = X(2),

L7

11.4. Conjugate Property:

then ZT[ x*(n) ] = X*(z*) is conjugate property of z transform.

Proof: From the basic definition of z transform of a sequence x(n)

0

IT[x(n) ] = Z x(n)z™"

Nn=-—oo

ZT(x*(M)]= S x*(n)z”
= Zw:x*(n)((z*)‘“)*
ICOINE

{i x(n) (z*)“}

N=—o0

=(ZT[ x(n)] withz = z*)*
=(X(z) withz = z*)*
=[X(z9)1*

= X*(z%)
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11.5. Exponential or Scaling in z-domain Property:
If x(n) is a discrete time sequence and ZT[ x(n) ] = X(2),
then ZT[ a" x(n) ] = X(z/a) is called exponential or scaling in z-domain property.

Proof: From the basic definition of z transform of a sequence x(n)

0

IT[x(n) ] = z x(n)z™"

Nn=-—o0o

Replace x(n) with a" x(n)

ZT[a" x(n)]= Y a" x(n)z "

00

=> xna"z"

n=-—w

0 7 -n
> o]

*0

11.6. Multiplication by n or Differentiation in z-domain Property:

If x(n) is a discrete time sequence and ZT[ x(n) ] = X(2),
then ZT[nx(n)]= - d/dz [ X(z) ] is called multiplication by n or differentiation in z domain property.
Proof:

From the basic definition of z transform of a sequence x(n)

IT[x(n) ] = X(2) = Z x(n)z "

n=-ow
Differentiate w.r.t z

o0

di'zl X(z)] = ngmx(m—z
= S x(n) (n)z™

n=-ow

D> x(n)(-n)z"z*

2t S [nx(n)]z"
L X@1=-2 ZTlnxm)]
Z Z

ZTnx(n)] = -z L[ X(2)]
dz
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11.7. Initial Value Theorem:

If x(n) is a discrete time causal sequence and ZT[ x(n) ] = X(z), then the initial value of a causal

signal can be computed from x(n) as well as X(z) by using the formula

Lt Lt
x(0) = "o Ox(n) =,

Proof:
From the basic definition of z transform of a sequence x(n)

ZTIx(m)]= 3 x(n)z™

X(z) = ix(n)z’n

=x(0)+x(1)z " +x(2)z % +..........
x(l) x(2)
=X(0) + . Sz Foeees

Apply as limit z —» o

X(z) = x(0) + XL X(l) X2,
Z—> 0 0?
=X(0)+0+0+..cceevrrmenn.

=x(0)

L L
= x(O):n_:Ox(n):Z_:OOX(z)

11.8. Final Value Theorem:

OOX(z) is called initial value theorem.

If x(n) is a discrete time causal sequence and ZT[ x(n) ] = X(z), then the final value of a causal signal

can be computed from x(n) as well as X(z) by using the formula

x@)= M am= M oaahxm =1

Proof: From the basic definition of z transform of a causal sequence x(n)

o]

IT[x(n) ] = Z x(n)z™"

n=0

Replace x(n) by x(n) — x(n — 1)

ZTIx(n)- x(n-1)] = Y [ x(n)- x(n-1) ]2
X@)- 2 X(@2)= Y [X(M)- x(n-1) ]z

(1- 2% )X@) = Y[ X(n)- x(n-1) ]z

1(z-1)X (z) is called final value theorem.
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Applyasz—1

21(1- 21 )X(2) = i i[ x()- x(n-1) 12"

8

-3 xm)- X001

8

= [x(n)-x(n-1)]

= [_(0) X(=D)]+[X@) = x(0)]+[X(2) = X(D)] ++cvevree
.............................. +[X(00 =1) = X(o0 — 2)]+[X(0) — X(00 —1)]
= —X(=1) + x(o0)

= X(0)

Lt Lt ) Lt
= X(0) = x(n) = (1-z1)X(2) = (z-1)X(2)
n— o z—->1 z—->1

11.9. Time Convolution Theorem:

If x1(n), x2(n) are two discrete time sequences and ZT[ x1(n) ] = X1(2), ZT[ x2(n) ] = X2(2),
then ZT[ x1(n) * x2(n) ] = X1(z) X2(2) is called time convolution theorem.

Proof:

From the basic definition of z transform of a sequence x(n)

[ee]

ZT[x(n) ] = z x(m)z "

n=—ow

Replace x(n) by x1(n) * x2(n)

ZT[ x,(n) *x,(n)] = i[ X, () *x,(n)] 2"

= Z (Z[Xl(m) X,(n-m)] j

—o0 \ M=

changethe order of summation

-y xl(m)(i X(n-m) 2" j

n=—o

= 3 x,(m) (ZTIx,(n-m)))

m=—w

= 3 (M) 2" ZT[x, ()]

= 3 (M) 27X, (2)

m=—o0

= X,(2)X,(2)
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12. Inverse Z-Transform:

Inverse z-transform is used to evaluate the discrete time sequence x(n) from the z-domain X(z) and
its Region of Convergence (ROC). Various methods of Inverse z transform are given below.

» Partial Fractions Method

» Power Series Method or Long Division Method

> Residue Method or Contour Integral Method

12.1. Partial Fractions Method:
In this method, take X(z)/z and split into partial fractions and finally multiply with z and use the
following formulas to obtain the time domain sequence x(n).

> ZT[E(M)]=1=Z"1]1=8()

> ZT[S(n-m)]=z"=Z Y{zM]=8(n-m)

> ZT[x(n-m)]=z™X(@2) =Z Y z™ X(@)] =% (n-m)

. ZT[ a"u(n) ]— |Z|>a$Z_1[L]={a”u(n)], iflz]|>a

ZTa u(n-1)] ==, | z|<a z—al —=a"u(-n-1D]if |z] <a

» ZT[na™un)] = lz|>a=>2Z"1 (%)=na”u(n),if |z|>a

a)2 ’

» ZT[n(n—1)a"u(n)] = a)3,|z| >a=27"1 (%) =nn—-—1)a"u),if |z|>a
Example:
_ N(z)
YO = G @ps)
X(z) _ N(z)

z z(z-p1) (z-p2) (z-p3)
X(z) A B C D
i + +

z zZ zZ-p, Z-pP, Z-P;

X(z)=A+B( z J+C[ z j+D( z J

Z-p, Z—-P, Z—Ps

x(n)=z" {A+B[ z J+C[ z j+D[ z ﬂ
Z—p, Z-p, Z—D;

x(n)zAZI(l)+le( z ]+czl( z j+DZl[ z J
Z—-pP, Z—D, Z—D,

= Ad(n) + Bp;u(n) + Cp,u(n) + Dp;u(n)
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12.2. Power Series or Long Division Method:

Partial fraction method is not suitable to evaluate the time domain sequence x(n) when the z-domain
X(z) consists of one pole or the factorization of denominator part of X(z) is not possible, to solve
such problems, the power series or long division method is used. Process of power series or long
division method is given below.

Case 1:

To obtain the causal or right sided sequence, assume x(n) =0, n <O0.

From the basic definition of z transform

ZT[x(n)]= ix(n)z‘n

X@)=Y x(n)z"
n=0
X(2)=X(O0)+ Xz +X(2Z 2 + o, )
It is the negative power series expansion of X(z)

From given X(z) = N(z) / D(z), determine the negative power series polynomial by using long

division method.

X(@)=N@)/D@)=a+bz t+cz 2+........... 2)
Now compare equations 1 & 2, implies

x(n) = {(%, by oy, }
It is the sequence representation of required discrete time domain signal

Case 2:
To obtain the anti-causal or left sided sequence, assume x(n) =0, n > 0.

From the basic definition of z transform

o0

ZT[x(n)]= D x(n)z™"

Nn=-o0

-1

X(z)= Y. x(n)z™"

N=—o0

X(@Z)=X(-1) 2+ X(=2) Z *+ X(-3) Z >+ evrreeeen. @)
It is the positive power series expansion of X(z)
From given X(z) = N(z) / D(z), determine the positive power series polynomial by using long
division method.
X(@)=N@)/D@)=az+bz?+cz3+............ 2)

Now compare equations 1 & 2, implies x(n) = { .................... d,cb,a, (T)}
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12.3. Residue Method or Contour Integral Method:

If the z-domain X(z) has multiple poles at a single location, then residue or contour integral method
is convenient to evaluate discrete time sequence x(n).

z 1 ah-1
L then x(n) = Lt

If X(@) = (z—a)V’ (N-D! z-a |dzN1 (p(2) 2"

Where,
p(z) : Numerator polynomial of X(z)
z=a :Location of pole

N : Number of poles located at z = a.

Dr. B. Ramesh Reddy, Professor of ECE & Vice Principal, LBRCE, Mylavaram, NTR Dist., AP. Page 34/58




Signals and Systems-23EC02 UNIT-V Laplace Transforms and Z-Transforms

13. Solved Problems:

13.1. Determine the Laplace Transform of x(t) = e~tu(t) + e 3tu(t)

LT[x(t)] = LT[e tu(t) + e 3tu(t)]
1 1
11 +S+—3,Re{s} > —1 & Re{s} > -3
. 2(s+2)
T (s+1D(s+3)

Re{s} > —1

13.2. Determine the Laplace Transform of x(t) = e~ ‘u(—t) + e 3tu(-t)
LT[x(t)] = LT[e tu(—t) + e 3tu(-t)]
-1 -1
=71 +S+—3,Re{s} < —1&Re{s} < -3
. —2(s+2)
S (s+1D(s+3)’

Re{s} < -3

13.3. Determine the Laplace Transform of x(t) = e tu(—t) + e 3tu(t)
LT[x(t)] = LT[e tu(—t) + e 3tu(t)]

1
= — R —-1&R —
s+1+s+3' e{s} < & Re{s} > -3

T G+DGE+3)

—3 < Re{s}< -1

13.4. Determine the Laplace Transform of x(t) = e~ tu(t) + e 3tu(—t)

LT[x(t)] = LT[e tu(t) + e 3tu(—t)]
1 -1
p—— +S+—3,Re{s} > —1&Re{s} < -3
_ 2
S (s+D(s+3)

,Does Not Exist
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13.5. Determine the Laplace Transform of x(t) = 3e2/tl — 2¢-3lt
LT[x(t)] = LT[3e—2|tI _ Ze—3|t|]

2(2) 2(3)
322_52—232_52,—2<Re{s}<2&—3<Re{s}<3
12 12
T4-s2 9-—g?
9—s%—(4—5s2)
‘G=sHE -9
60
~ (4—52)(9 - s5?)

=1

,—2 < Re{s}<?2

13.6. Determine the Laplace Transform of x(t) = e ?*u(t — 3)
LT[x(t)] = LT[e % u(t — 3)]
= LT[e 2t=3+3y (¢t — 3)]

= e OLT[e 23yt — 3)]
1
— ,—6,—3s
¢ ¢ s+ 2
e—3(s+2)

= R > -2
s+ 2 e{s}

13.7. Determine the Laplace Transform of x(t) = 2Cos (6t + %) u(t)
LT[x(¢)] = LT [ZCos (6t + %) u(t)]
— LT [2 <Cos(6t) Cos (%) — Sin(6t)Sin (%)) u(t)l

= LT[V2(Cos(6t) — Sin(6t))u(t)]

— S 6
6% +s? 62452
V2(s —6)
=— “ R
36152 Retsi>0
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13.8. Determine the Laplace Transform of x(t) = 4Cos? (3t + g) u(t)
LT[x(6)] = LT [4Cos? (3t + Z) u(®)|
s
=LT [2 + 2Cos (6t + Z) u(t)]

= LT[2 + V2(Cos(6t) — Sin(6t))u(t)]

2 — S 6

S+ 62+ s2 62+ 52

2 V2(s—6)
=42 “pR

S+ 36 +s2 "’ e{s}>0

13.9. Determine the Laplace Transform of y(t) = te2tl
LT[y()] = LT[tx(8)], x(t) = e~*I"!

=~ s (s)

_d < 2(2) )
ds\2%2 —s2
d 4
-~ T ds (4 — 52)
3 (—4(—25))
(4 — s2)?
—8s

:m,—z < Re{S} <2

13.10. Determine the Laplace Transform of y(t) = tSin(2t)u(t)
LT[y(®)] = LT[tx ()]

d
= —%X(S)

d 2

- _g(ZZ +SZ)
d 2

- _g(4+52)

3 —2(2s)
- ((4 + 32)2>

_ 4s
(4 +52)?’

Re{s}>0
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13.11. Determine the Laplace Transform of y(t) = tCos(2t)u(t)

LTly(®)] = LT[tx(t)]
d

= —&X(S)

d S
- _&(22 +52)

d s
- _&(4+52)

(4 +5%)1-5(29)
“( (4 + s2)? >

B 4 + 5% — 257
N (4 + 52)2
A+t 52
(44 52)?’

Re{s} >0

13.12. Determine the Laplace Transform of y(t) = e~ *Sin(bt)u(t)

LT[Sin(bt)u(t)] = Re{s} >0

= LT[y(t)] = LT[e"*Sin(bt)u(t)]

_ b
" b2+ (s+a)?

Re{s} > —a
13.13. Determine the Laplace Transform of y(t) = e"*Cos(bt)u(t)

LT[Cos(bt)u(t)] = bz;JrSz,Re{s} >0

= LT[y(t)] = LT[e % Cos(bt)u(t)]

s+a

:m,Re{S} > —a
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e at_g

13.14. Determine the Laplace Transform of y(t) =

LTy(O)] = LT [@
= fooX(s)ds

“r1 1
=f < - >ds
s \s+a s+b

= log|s + a| — log|s + b| |o;,Re{s} > —a & Re{s}>—b

I |S+a|oo
=lo

g s+ bls
s+a

s+b

=0—log|

s+b
= log |S+a|,Re{S} > —b,if a>b,&Re{s} > —a,if b>a

Cos(at)—Cos(bt)

13.15. Determine the Laplace Transform of y(t) = -

LTIy = LT [if)

u(t)

= fooX(s)ds

* s s
:_fs (a2+52_b2+sz)ds

1
= Elogla2 + 52| — log|b? + s?| |OSO,Re{s} >0

—1l a? + s?|wo
299 pz 152 s
— o 1l a? + s?
~ U T2z x5
1 b? + s?
—Elog 712 ,Re{s}>0
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Sin(at)

13.16. Determine the Laplace Transform of y(t) = ”

u(t)
LTIy(O] = LT [@

= wa(s)ds

N
N j; (az j—sz) ds
= ran ([

=2 _Tant (2)

2(s+1)
s2+4s+7

13.17. Find initial and final values of a signal x(t), given X(s) =

Initial value:

x(0) =, f 0

Lt
s> OOSX(S)

Lt 2(s+1)
s—>oossz+4s+7
Lt 2s*+s
s> ows?2+4s+7

=2

Final value:

x@) =, 1 x©

= It (X

S —

Lt 2(s+1)
ZSAOSm
Lt 2s%+s
=s—>0m

=0
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2

13.18. Find the value of x(t) as t—0, given X(s) = ;=

x() = x(®

_ Lt OSX(S)

S —

Lt 2
s—>0 s(s+1)
Lt 2
s—=>0s+1
=2

a

s2+a2’

13.19. Find the final value of a signal x(t), given X(s) = Re{s} >0

Final value:

x(o0) = . itoox(t)

Lt .
=5 ooSln(at)

= Sin(o0)

=-1<x(0) <1

13.20. Determine the Laplace Transform of x(t) = e~ fu(t) * e 3tu(t)
LT[x(t)] = LT[e tu(t) * e 3tu(t)]
1

1
= R —-1&R -
11553 e{s} > & Re{s} > -3

“GrDG 3y Retsi> -1

13.21. Determine the Laplace Transform of x(t) = e~ tu(—t) * e 3tu(—t)
LT[x(t)] = LT[e " tu(—t) * e 3tu(-1t)]
-1 -1

= R —-1&R -
ST 1553 e{s} < & Re{s} < -3

= GF DG 3y Relsi<3
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13.22. Determine the Laplace Transform of x(t) = e~ tu(—t) * e 3tu(t)
LT[x(t)] = LT[e tu(—t) * e 3tu(t)]
-1 1
=TT is7 3,Re{s} < —1& Re{s}> -3
-1
T G+DGE+3)

—3 < Re{s}< -1

13.23. Determine the Laplace Transform of x(t) = 3e~2Itl « 273l

LT[x(t)] = LT[3e72!t x 2¢731t]

2(2) | 2(3)
= 322_52232_52,—2 < Re{s} <2&—3<Re{s}<3
12 12
4 —529 — 2
= 144 2<R <2
=G _sp@ sz 2 <Rets)
. _ s+2
13.24. Determine the Inverse Laplace Transform of X(s) = GIDGTD
s+2
X(s) =
(s) (s+1D(s+3)
__4 B 142 1
s+1 s+3 A= =5
-1+3 2
1/ 1 1 _
_ _( + ) g_-3+2_1
2\s+1 s+3 —34+1 2
(1 - .
E(e fu(t) + e 3tu(t)), if Re{s}> —1
1
x(t) =+ E(—e‘tu(—t) — e 3tu(-t)), if Re{s} < -3
1
5 (—e tu(—t) + e 3tu(t)),if —3 < Re{s} < —1
13.25. Determine the Laplace Transform of tx(t), if X(s) = sz+ls+1

d
LT[tx(t)] = —gX(s)

d 1
- _g(sz+s+1)
—1(2s+1)
-~ (Frer)
2s+1
“GTrs IR

Laplace Transforms and Z-Transforms
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5-s
s2—s-2

13.26. Determine the Inverse Laplace Transform of X(s) = by assuming the Fourier

Transform of the signal x(t) exists.

5-5
X(S)ZSZ—S—Z
_ 5-s5
T (s=2)(s+1)
A B _5-2_
=s—2-|_5+1 25++11
_ 1 B 2 B=_l_2=—2
s—2 s+1

Required signal should be bounded, where -1 < Re{s} < 2
x(t) = e?'u(—t) — 2etu(t)

1
s(s-1)

13.27. Find the final value of a signal x(t), given X(s) =

Initial and final value theorems are used only for causal signal, where all the poles should be left

sided. But in this case, one pole is located at s=1 (right hand side).

X(s) = (s=1)
A B
s s—1
1 1
T s U s+1
Causal signal,
x(t) = —u(t) + etu(t)
= (et — Du(t)

= x(0) =e* -1

= w
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13.28. Evaluate the Z-Transform of x(n) = 3 (%)n u(n) — 2 G)n u(n)

ZT[ x(n) ] :ZT{ @jnu(n) 2( j u(n)}
1Y 1Y
X(2) :SZ-{(EJ u(n)]—ZZT{(éj u(n)}

:3_21—2— |z|>= &| |>—
7-= 1-=
2 3
:z(3z—11—22411), |z|>%
-~ z-=
2 ))
el
=)
" n 72 ROC
ZT[B = u(n)—2 u(n)| = X(z) = 1 1 1
) wem=2(3 CDED | e

13.29. Evaluate the Z-Transform of x(n) = 3(2)"u(-n—-1) — 2(3)"u(-n—-1)
ZTEx(n) ] = ZT32)u( ~n-1)- 23 u( ~n-1))
X(2) =3zT [(2) ( n-1)]-2z7|(3)u( -n-1)]

=3ZT[()u( n- 1)] 2ZT[ 3f'u(-n- 1)]
-3z -21

=S |z|<2&|z]<3
e
X(2) = (Z__ZS(;E)B), lz| <2
—2(z—-5) ROC

ZTB@"u(-n -1 = 2@)"u-n - DI =X@) = 5353

|z | <2
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13.30. Evaluate the Z-Transform of x(n) = 3 (%)n un) -23)"u(-n—-1)
ZT[ x(n)] =ZT {3@} u(n)—2(3)"u( —n —1)}

X(2) = 32T H%} u(n)} 2773y u( -n-1)]

% _2) ,|z|>1&|z|<3
, 1 z-3 2
2

_ z(3z—f+22—1), 1<|z|<3
[z—zj(z—B)

52(z-2) 1

=—(Z_;j(z_3), =<|z|<3

7T l3 G)n u(n) —23)"u(-n - 1)l =X(2) =

52(z — 2) ROC

(z-3) -3 Tllz1<3

13.31. Evaluate the Z-Transform of 3x1(n)+2x2(n), x;(n) = (%)n u(n) and x,(n) = G)n u(n)

ZT[ 3x(n)+2x,(n) 1 =3ZT[ x(n)] +2ZT[x,n) ]

g} on

3z 227 1 1
=——+—— |z]>2&z|>Z
11 2 3
2 3
_2(3z-1+22-1) |z|>1
=l
z-=|z-=
2 3
_2(52-2) |z|>1
’ 2
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1n\nt+1
13.32. Evaluate the Z-Transform of x(n) = 3 (E) un—-9)

l n+l 1 n-9+10
T {3&] u(n-9) }=3ZTHEJ u(n—9):|
1 10 1 n-9

13.33. Evaluate the Z-Transform of u(n) and u(-n)
We know that,

n —
ZT|a u(n)]—z_a, lz|>a
Puta=1
2T I lz]>1
Apply time shifting property of z Transform
1/z
ZT[u(-n)] = 1z >1
Ll 1/z-1 | |
-1z«
1-z
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13.34. Evaluate the Z-Transform of na"u(n)
We know that,

VA
ZT[a" =—, >
@uml=—, |z]>a

Apply differentiation in z domain property

ZT[na"u(n)] =-z i(ij

dz\z-a

:_{(z ~a)(1)- z(l))

(z-a)*

Z—a—1Z7
=—7| —————

)
&z
(z-a)’

13.35. Evaluate the initial value of a causal signal x(n) from the z domain
z(5z—-2)

(+-2)(=-3)

L
0=~ X@)

1
lz|>=

X(2) = .

5-0
T (1-0)a-0)
=5
13.36. Evaluate the final value of a causal signal x(n) from the z domain
z(5z - 2)

(z-2)(z-3)
Lt (z-1z(5z-2)

Lt
x() = z —>1(Z_1)X(Z) I —>1( 1)( 1]

1
lz]>>

X(@) = >

- |z-=
2 3

_a-06E-2)
(1-1/2)(1-1/3)
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13.37. Evaluate the Z-Transform of a"u(n)*na"u(n)
We know that,

ZT[a"u(n)]zZia , |z|>a
and
az
ZT[na™u(n)] = -7 |z|>a
ZT[a"u(n)*na"u(n)] = ZT[a"u(n)]ZT[na"u(n)]
1 az
z-a(z-a)?
az’
= m ,‘ Z ‘ >a

13.38. Determine the right sided or causal sequence x(n) using partial fractions method

z(z+1
X@ =20 1.3
) S
2 4 A-2 _2_g
X(z) z+1 11 1
C )l 1,
2 4 1+1 >
4 _ 2 _
1 R
2 4 4 2 4
z z
X(z):6z_—1—102_—1
2 4 For a causal or

right sided signal
x(n) =6Z"

1
4

1Y 1Y
:6(5) u(n)—lo(zj u(n)

N\
N
[EEN
|
[N
o
N
i
N
N
\
N
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13.39. Determine the left sided or anti-causal sequence x(n) using partial fractions method

z2(z+1
X(z) = i )1
z-=|z-=
=33
For anti-causal or
z z left sided signal
=6 1 10 1 1
z-E z-Z \Z\<§
and
1
Z |z|<5

1

x(n) =627 —%_|-102*
Z

Z_i

2 4
1Y\" 1Y\"
= —6&) u(-n-1) +10(Zj u(-n-1)

13.40. Determine both sided sequence x(n) using partial fractions method

X(z) = z(z+1)
e
z-—|z-=
2 4
For both sided signal
z z 1
:6 Z__l —10 Z-—E ‘Z‘<E
2 4 and
2>
4
_ 71 Z _ 71 Z
x(n) =62 — 10z -1
z-- z--
2 4

1Y 1Y
—G(Ej u(—n—l)—lO(Zj u(n)
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Laplace Transforms and Z-Transforms

z+1
T
2 4
X(z) z+1
G
2 4
_A, B, C
z , 1,1
2

x(n) =8z [1+122 Y —£- |-20z | -2
Z_i
2 4

1Y 1Y
= 85(n)+12(5j u(n)—ZO(Z) u(n)

A= (1”1 ~ =8
[o-3)-%)
2 4
14_1 §

-2 —2_12
111y 1
2\2 4 8
S

= = =-20

1(1.1) -1
For a causal or
right sided signal
1251|751
2 4
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13.42. Determine the right sided or causal sequence x(n) from power series method

z+1
X(2) = T

(2) (~3)
We know that the negative power series expansion of X(z) is
X(2)=x(0)+x(Dz7 '+ x(2)z %+ ciiiinnn (D
Given,
z+1 z+1

CTEDED A

Apply long division method and evaluate the negative power series expansion of X(z)

3 1 7 19
22——Z+—) z +1 (z'1+—z_2+—z_3+ ...........

4% 73 4 16
3 1
_ |
Z 4+SZ
7 1
I |
4 87
7 21 7
-1 _ _ -2
4 167 327
19 7
[ B
167 T337
19 57 19
-1 _ - -2 - -2
167 “e1? T1izs
7,19
= e B
X(2) =21 + L2t 2
(z2)=z 22 TeZ Fo (2)

Compare equations (1) and (2)
=x(0) = 0,x(1) =1, x(2) =7,X(3) = 7rerrevernn

Sequence representation of causal sequence x(n),

7 1
x(n) = {(T), 1, —
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13.43. Determine the left sided or anti-causal sequence x(n) from power series method
z+1

(+3)(=3)

We know that the positive power series expansion of X(z) is

X(2) =

X(2)=x(Dz' + x(Dz2 + x(Q)z3+..ooiiin (D
Given
X(2) z+1 z+1 1+z
Z) = = =
n, ., , 3 .1 1 3 .,
(z3)(z7) z2-72+5 g-gz+z

Apply long division method and evaluate the positive power series expansion of X(z)

1 3 2 2 3
§_ZZ+Z ) 1+ z (8+56z+272z°+1184z°+...........
1-6z+ 8z
7z — 8z°
7z — 42z* + 5623
3472 - 56 z3
34z* — 20423 + 272z*
148z3 — 272z%...........
X(2) =8+56z+ 272z + 118423+, (2)

Compare equations (1) and (2)
= x(0) = 8,x(-1) = 56, x(-2) = 272,x(=3) = 1184,..............

Sequence representation of anti-causal sequence,

x(m) ={ 1184, 272,56, §}
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13.44. Determine the causal signal x(n) from Residue method

Z
BRNCEDY

Givenp(z) =z, N=3and a =2.

xmy=—+ M {d' (b z“)}

- (N-1)! z—a |[dM

1 Lt d? .
s )
1 Lt d> (.,
2 @)
Lt
:% ) ho-n2]

1
== n(n-1)2"?
> (n-1)

:n(n-1)2” u(n)

13.45. Determine the causal signal x(n) from Residue method
2

(z—-2)°
Givenp(z) =z, N=3and a =2.

(- L Lt {L o) Zn_l)}

T(N-1)! z-a |dZ™

1 Lt d .
e |
1 Lt d2 n+
3 e i )

=% ZE[)Z [n+1)nz"]

X(2) =

1 1
== nnh+1)2"
> (n+1)

:n(n+—1)2nu(n)
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13.46. Determine the causal signal x(n) from Residue method
1
(z—2)*

Givenp(z) =1, N=4anda =2.

X(z) =

N-1

1 Lt d n-1
X(n)z(N—l)! z>a {F P@) 2 )}
_1 d_3(1 2)
31 z52 |dZ
1 Lt d3 n-1
s e ()

1 »
S s [n-1) (n-2)(n-3) z™*]

=% (n-1)(n-2)(n-3)2™*

_(n-1)(n-2)(n-3)2" 4
- 96

(n)
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14. Assignment Questions:

1. Determine the Laplace Transform of following signals
Mx(t) = Sin(at)u(t) (i)y(t) = Cos(at)u(t)
2. Determine the Laplace Transform and associated ROC of the signal,
x(t) = e~ tu(t) + e 2tu(t) + e 3tu(t)
3. Determine all posible signals corresponding to the s-domain

s+ 16
(s+1D(s+2)(s+4)(s+8)

4. Evaluate the Z-Transform and indicate the ROC for the following sequences
()x(n) = a™Sin(nB)u(n) (i)y(n) = a™Cos(nB)u(n)
5. Apply properties to Evaluate the Z-Transform and associated ROC for x(n)=a"*'° u(n-10

X(s) =

6. Apply partial fractions method and compute all possible cases of x(n) from X(z)
z+1
(z—1/2)(z - 1/9)(z - 1/8)

7. Apply power series method and Evaluate both the causal and Non-causal sequences from

X(z) =

YOr) = z2+z+1
@) 223432242+ 4
8. Apply Residue method and Obtain the causal sequence x(n) from X (z) = (jle_/i;

9. Compute the initial value of a causal sequence x(n) from the z-domain
zz+1)(z+2)
(2z—-1/2)(4z—1/4)(8z — 1/8)
10. Calculate the final value of a causal sequence x(n) from the z-domain
zz+ 1)(z+2)

e PE-DE-D

11. Find the Inverse z-transform X(z)=log(1+az™?)

X(z) =

12. Determine the z-transform of a convoluted sequence, x(n) = u(n) * nu(n) * nu(n)

13. Find a causal sequence from the z-domain

K@ =25 XD =5 (i) X(2) = 555,55
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15. Quiz Questions:

Q. No. Question Description Answer
1. Laplace transform of x(t) is defined by
(1). X(s)= [ x(t)e“dt (2). X(s)= [ x(t)e*dt
2 Zo 1
(3). X(s)= Ix(t) e "t (4). None of the above
2. Inverse Laplace transform of X(s) is defined by
o+jw o+jo
(1) x®)=> [ X(s)e*ds 2). x())=== | X(s)e*ds
2 o—jw 2 o-jo 2
o+jo
(3). x(t) = IX (s)eds (4). None of the above
T .
o-jw
3. Laplace transform and Fourier transform are equal if the value of o is 3
(1). One (2). Infinity (3). Zero (4). None of the above
4, The Laplace transform of x(t) is convergence if,
(1). j [x(t)e *|dt = oo (2). j X(t)|dt >o0
b - )
(3). j [x(t)e dt > oo (4). j [x(t)e *|dt < oo
S. The Laplace transform of x(t)=e *u(t)is
(2). i (2). L (3). 1 5 (4). None of the above 1
s+a s—a (s+a)
6. The range of Re{s}, for which the Laplace transform converges is called
(1). Region of Divergence (2). Region of Convergence (3). Both 1& 2 2
(4). None of the above
7. The Region of Convergence of signal x(t) = x(t)=e *u(t) is 3
(1).Re{s}=0 (2).Re{s}=a (3). Re{s}>-a (4).Re{s}<-a
8. The Region of Convergence of signal x(t) = Xx(t)=—e *u(-t)is 4
(1).Re{s}=0 (2).Re{s}=a (3). Re{s}>-a (4).Re{s}<-a
9. The Laplace transform of x(at) is
11,1S S 1 1
(1). =X (2). X|— (3). |[=IX(S) (4). None of the above
a a a a
10. The Laplace transform of x(t)e* is
2
(1). 1 X S (2). X(§-=S,) (3). X(S+S,) (4). None of the above
a a
11. n
The Laplace transform of o X(t) is 3
(1). X(s)  (2). SX(S) (3). S"X(S) (4). None of the above
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12. The Laplace transform of the x(t) = u(t) — u(t-T)

W 2. @l op =L 4
S S S S
13. 2(5 +1)

, then the initial value of x(t) is_

The Laplace transform of x(t) is X(S) = ————
P WisXS)= 2 o515 1

(1).2 (2).0 (3).-2 (4).5

14. 2(S +1)

The Laplace transform of x(t) is X(S) = , then the final value of x(t) is__

S?2+2S+5 2
(1).2 (2).0 (3).-2 (4).5

15. The ROC of the Laplace transform of the function x(t)=e ®*2"%u(t) is

(1). Re{s}>a+7 (2).Re{s}>a+5 (3).Re{s}>a+2 (4).Re{s}>a 3
16. If x(t) is two sided signal, then its ROC is
(1). Right sided (2). Left sided 4
(3). Entire S - Plane (4). Finite duration strip, which lies between two
poles.
17. If x(t) is right sided signal, then its ROC is
(1). Right half of the S-Plane  (2). Left half of the S-Plane 1
(3). Entire S - Plane (4). Finite duration strip, which lies between two poles.
18. The Laplace transform of Cos(at)u(t) is
a S a S 2
(1) S? +a? (2) S?+a? B). S?—a’ (@) 52 —a?
19. The Laplace transform of e *Cos(bt) is
P g S g SRy 3
(S+b)*+a (S+b)"+a (S+b)*+a (S+b) +a
20. The inverse Laplace transform of X (s) __S*S
(s+1D(s+3) 4

(1). et —e® (2).e*+e"t  (3). 2+  (4). 20—

21. t
If X(s) is Laplace transform of x(t), then the Laplace transform of jx(r)dr is
_o 1
X(S)
(1), —= (2). SX(S) —x(0) (3). SX(S) (4). None of the above
22. Laplace transforms of f(t) and g(t) are F(s) and G(s), respectively. Which one of the
following expressions gives the inverse Laplace transform of F(s)G(s)? 2
(2). f(t)g(t) (2). f(t)*g(t) (3). f(t)-g(t) (4). None of the above
23. (S+3)

, then the initial value of x(t) is

The Laplace transform of x(t) is X(S) =
S(S+2) 4

(1).3/2 (2.0 (3).-2 (4).1

24, (S+3)

The Laplace transform of x(t) is X(S) = , then the final value of x(t) is

S(S+2) 1
(1).3/2 (2).0 (3).-2 (4).1
25. A system is said to be causal, if it’s all poles of system function
(1). Lies on right side of the ROC.  (2). Lies on left side of the ROC. 2
(3). Includes jw axis (4). None of the above
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26. A system is said to be stable, if it’s all poles of system function
(1). Lies on right side of the ROC.  (2). Lies on left side of the ROC. 3
(3). Includes jw axis (4). None of the above
217. —as
The inverse Laplace transform of X (S)= © s 4
(1).e™  (2).u(t) (3). (t—a)ut—a)) (4). u(t—-a)
28. The inverse Laplace transform of X (S):;, if ROC re{s}>1
(S+4)(S-2)
2 2 2 2
1). —=e "u(t)+=e'u(t 2). —eu(t)—=e'u(t 1
()5 ()5() ()5 ()5()
(3). —%e‘“u(t)—%e‘u(t) (4). None of the above
29. If the poles are lies to left sided of ROC, its associated time domain signal is
1). Left sided signal. (2). Right sided signal. 2
(3). Two sided (4). None of the above
30. What is the ROC of ZT[u(n)] 5
(A)lz[>0 (B)lz>1 (C)0<|z<1 (D)[z)<0
31. Find the z-domain of x(n)={1,0,1} A
(A)1+z1 (B) z+1+z1 (C) z+z1 (D) 1+z
32. Determine the Z-transform of x(n)=3(n-9) v
33. |What is the ROC of z transform of * (5)"u(n) + ()"u(n) + u(n) ” Iz]>1
34, If ZT of a"u(n) * b"u(n) is X(z)/(z-a)(z-b), then X(2) is c
(A)1 (B) z (C) 22 (D) 1+z
35. If ZTof u(-n) is k/X(z), then k-X(z) is z
36. Find a causal sequence from the z-domain X(z) = ﬁ u(n-1)
37. — 2 —aNn-b _ —
IfX(z) = 29(2_9)and x(n)=a""u(n-c), then a,b,c 5
(A)9,9,9 (B) 9,10,9 (C) 10,9,9 (D) 9,9,10
38. . .. _ z(z+1)
Find the initial value of a sequence x(n) from X(z) = G-D@-D 1/6
39. . . _z(z+1)
Find the final value of a sequence x(n) from X(z) = DD 2
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